Navigating the landscape of next-generation surgery through a new fractal scalpel

Authors

  • Ismail A Mageed * School of Computer Science, AI, and Electronics, Faculty of Engineering and Digital Technologies, University of Bradford, ‎ United Kingdom. https://orcid.org/0000-0002-3691-0773

https://doi.org/10.22105/thi.v2i1.28

Abstract

Among the oldest medical skills, surgery is now experiencing its most fundamental change to date. The classic image of the surgeon dependent only on manual dexterity and direct line of sight is disappearing and giving way to a new paradigm whereby robotics enhances human experience, Augmented Reality (AR) lights it, and the predictive ability of Artificial Intelligence (IA) leads it. With next-generation surgery, this development promises unparalleled accuracy, little invasiveness, and customized patient care. Leading this uprising are not only small developments in technology but also whole new conceptual approaches for intervention, including the fledgling field of fractal geometric surgery. From impossible prices and ethical issues to the basic problem of incorporating these complex systems into clinical practice, this technologically advanced frontier presents its own set of great obstacles.  

Keywords:

Next-generation surgery, Artificial intelligence, High-tech frontier, Robotics

References

  1. [1] Boal, M., Di Girasole, C. G., Tesfai, F., Morrison, T. E. M., Higgs, S., Ahmad, J., … & Francis, N. (2024). Evaluation status of current and emerging minimally invasive robotic surgical platforms. Surgical endoscopy, 38(2), 554–585. https://doi.org/10.1007/s00464-023-10554-4

  2. [2] Fong, Y., Erhunmwunsee, L., Pigazzi, A., Podolsky, D., & Portenier, D. D. (2024). Robotic general surgery. Wolters Kluwer Health. https://www.amazon.nl/-/en/Yuman-Fong/dp/1975192648

  3. [3] Hussain, M., Jaffar-Karballai, M., Kayali, F., Jubouri, M., Surkhi, A. O., Bashir, M., & Murtada, A. (2025). How robotic platforms are revolutionizing colorectal surgery techniques: A comparative review. Expert review of medical devices, 22(5), 437–453. https://doi.org/10.1080/17434440.2025.2486481

  4. [4] Abdelwahab, S. I., Taha, M. M. E., Farasani, A., Jerah, A. A., Abdullah, S. M., Aljahdali, I. A., ... & Hassan, W. (2024). Robotic surgery: Bibliometric analysis, continental distribution, and co-words analysis from 2001 to 2023. Journal of robotic surgery, 18(1), 335. https://doi.org/10.1007/s11701-024-02091-6

  5. [5] Togami, S., Higashi, T., Tokudome, A., Fukuda, M., Mizuno, M., Yanazume, S., & Kobayashi, H. (2023). The first report of surgery for gynecological diseases using the hinotoriTM surgical robot system. Japanese journal of clinical oncology, 53(11), 1034–1037. https://doi.org/10.1093/jjco/hyad105

  6. [6] Marchegiani, F., Siragusa, L., Zadoroznyj, A., Laterza, V., Mangana, O., Schena, C. A., ... & de’Angelis, N. (2023). New robotic platforms in general surgery: what’s the current clinical scenario? Medicina, 59(7), 1264. https://doi.org/10.3390/medicina59071264

  7. [7] Śliwczyński, A., Szymański Michałand Wierzba, W., Furlepa, K., Korcz, T., Brzozowska, M., & Glinkowski, W. (2024). Robotic-assisted surgery in urology: Adoption and impact in Poland. https://doi.org/10.20944/preprints202410.0369.v1

  8. [8] Sarin, A., Samreen, S., Moffett, J. M., Inga-Zapata, E., Bianco, F., Alkhamesi, N. A., ... & SAGES Robotic Platforms Working Group. (2024). Upcoming multi-visceral robotic surgery systems: A SAGES review. Surgical endoscopy, 38(12), 6987-7010. https://doi.org/10.1007/s00464-024-11384-8

  9. [9] Kumar, R., Jain, V., Han, G. T. W., & Touzene, A. (2023). Immersive virtual and augmented reality in healthcare: an IoT and blockchain perspective. CRC Press. https://doi.org/10.1201/9781003340133

  10. [10] Gayet, B., de Trogoff, E., & Osdoit, A. (2024). The evolution of minimally invasive robotic surgery: Addressing limitations and forging ahead? In Artificial intelligence and the perspective of autonomous surgery (pp. 119–137). Springer. https://doi.org/10.1007/978-3-031-68574-3_9

  11. [11] Jin, M. L., Brown, M. M., Patwa, D., Nirmalan, A., & Edwards, P. A. (2021). Telemedicine, telementoring, and telesurgery for surgical practices. Current problems in surgery, 58(12), 100986. https://doi.org/10.1016/j.cpsurg.2021.100986

  12. [12] Pilavaki, P., Gahanbani Ardakani, A., Gikas, P., & Constantinidou, A. (2023). Osteosarcoma: Current concepts and evolutions in management principles. Journal of clinical medicine, 12(8), 2785. https://doi.org/10.3390/jcm12082785

  13. [13] Di Ieva, A. (2024). Computational fractal-based analysis of MR susceptibility-weighted imaging (SWI) in neuro-oncology and neurotraumatology. In The fractal geometry of the brain (pp. 445–468). Springer. https://doi.org/10.1007/978-3-031-47606-8_23

  14. [14] Cummings, D., Wong, J., Palm, R., Hoffe, S., Almhanna, K., & Vignesh, S. (2021). Epidemiology, diagnosis, staging and multimodal therapy of esophageal and gastric tumors. Cancers, 13(3), 582. https://doi.org/10.3390/cancers13030582

  15. [15] Markan, S., Verma, M. M., & Garg, V. (2025). Transformation of India’s med-tech ecosystem for surpassing the valleys of death for societal impact: A need for a multi-sectoral approach. In Innovations in healthcare technologies in india: an initiative of icmr-cibiod (centre for innovation and bio-design) (pp. 119–126). Springer. https://doi.org/10.1007/978-981-97-0244-2_13

  16. [16] Vuille-dit-Bille, R. N. (2020). Special issue on surgical innovation: new surgical devices, techniques, and progress in surgical training. Journal of international medical research, 48(3), 0300060519897649. https://doi.org/10.1177/0300060519897649

  17. [17] Mageed, I. A., & Bhat, A. H. (2022). Generalized Z-Entropy (Gze) and fractal dimensions. Appl. math, 16(5), 829–834. http://dx.doi.org/10.18576/amis/160517

  18. [18] Mageed, I. A., & Mohamed, M. (2023). Chromatin can speak fractals: A review. The university of bradford life sciences postgraduate research conference. University of Bradford. https://www.researchgate.net/publication/374056291_Chromatin_can_speak_Fractals-_review

  19. [19] Mageed, I. A. (2023). Fractal dimension (d f) of ismail’s fourth entropy (h iv( q, a 1, a 2,.., a k)) with fractal applications to algorithms, haptics, and transportation. 2023 international conference on computer and applications (ICCA) (pp. 1–6). IEEE. https://doi.org/10.1109/ICCA59364.2023.10401780

  20. [20] Mageed, I. A. (2024). The fractal dimension theory of ismail’s third entropy with fractal applications to cubesat technologies and education. Complexity analysis and applications, 1(1), 66–78. https://doi.org/10.48314/caa.v1i1.31

  21. [21] A Mageed, I., & Li, H. (2025). The golden ticket: Searching the impossible fractal geometrical parallels to solve the millennium, P vs. NP open problem. https://www.preprints.org/frontend/manuscript/f465506d31ca34adaf50160c2b033232/download_pub

  22. [22] A Mageed, I., & Li, H. (2025). Reaching the pinnacle of the digital worldopen mathematical problems in AI-driven robot control. Soft computing fusion with applications, 2(2), 74–84. https://doi.org/10.22105/scfa.v2i2.54

  23. [23] A Mageed, I. (2025). Fractals across the cosmos: From microscopic life to galactic structures. https://www.researchgate.net/profile/Ismail-A-Mageed-2/publication/392327081_Fractals_Across_the_Cosmos-_From_Microscopic_Life_to_Galactic_Structures/links/683dd7c86b5a287c3048c3b8/Fractals-Across-the-Cosmos-From-Microscopic-Life-to-Galactic-Structures.pd

  24. [24] A Mageed, I. (2025). Surpassing beyond boundaries: Open mathematical challenges in AI-driven robot control. https://www.preprints.org/frontend/manuscript/89b389b18166331f6c1538da8f595993/download_pub

  25. [25] Nayak, S. R., & Mishra, J. (2019). Analysis of medical images using fractal geometry. In Histopathological image analysis in medical decision making (pp. 181–201). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-5225-6316-7.ch008

  26. [26] Baish, J. W., & Jain, R. K. (2000). Fractals and cancer. Cancer research, 60(14), 3683–3688. https://aacrjournals.org/cancerres/article/60/14/3683/506426/Fractals-and-Cancer1

  27. [27] Gazit, Y., Baish, J. W., Safabakhsh, N., Leunig, M., Baxter, L. T., & Jain, R. K. (1997). Fractal characteristics of tumor vascular architecture during tumor growth and regression. Microcirculation, 4(4), 395–402. https://doi.org/10.3109/10739689709146803

  28. [28] Szasz, A. (2021). Vascular fractality and alimentation of cancer. International journal of clinical medicine, 12(7), 279–296. https://doi.org/10.4236/ijcm.2021.127025

  29. [29] Lookian, P. P., Chen, E. X., Elhers, L. D., Ellis, D. G., Juneau, P., Wagoner, J., & Aizenberg, M. R. (2022). The association of fractal dimension with vascularity and clinical outcomes in glioblastoma. World neurosurgery, 166, e44--e51. https://doi.org/10.1016/j.wneu.2022.06.073

  30. [30] Chatterjee, S., Das, S., Ganguly, K., & Mandal, D. (2024). Advancements in robotic surgery: Innovations, challenges and future prospects. Journal of robotic surgery, 18(1), 28. https://doi.org/10.1007/s11701-023-01801-w

  31. [31] Oslock, W. M., Jeong, L. D., Perim, V., Hua, C., & Wei, B. (2024). Robotic surgical education: A systematic review of strategies trainees and attendings can utilize to optimize skill development. AME surgical journal, 4. https://doi.org/10.21037/asj-24-14

  32. [32] Sherif, Y. A., Adam, M. A., Imana, A., Erdene, S., & Davis, R. W. (2023). Remote robotic surgery and virtual education platforms: How advanced surgical technologies can increase access to surgical care in resource-limited settings. Seminars in plastic surgery (Vol. 37, pp. 217–222). Thieme Medical Publishers, Inc. https://doi.org/10.1055/s-0043-1771301

  33. [33] Collins, J. W., Marcus, H. J., Ghazi, A., Sridhar, A., Hashimoto, D., Hager, G., ... & Stoyanov, D. (2022). Ethical implications of AI in robotic surgical training: A Delphi consensus statement. European urology focus, 8(2), 613–622. https://doi.org/10.1016/j.euf.2021.04.006

  34. [34] Fairag, M., Almahdi, R. H., Siddiqi, A. A., Alharthi, F. K., Alqurashi, B. S., Alzahrani, N. G., ... & Alshehri Sr, R. (2024). Robotic revolution in surgery: Diverse applications across specialties and future prospects review article. Cureus, 16(1), e52148. https://doi.org/10.7759/cureus.52148

  35. [35] Vashisht, N., Goyal, W., Choudhary, S., Jayakumar, S. S., Patil, S., Mohapatra, C. K., & Srividya, A. (2024). Ethical and legal challenges in the use of robotics for critical surgical interventions. Seminars in medical writing and education (Vol. 3, p. 30). AG Editor (Argentina). https://dialnet.unirioja.es/servlet/articulo?codigo=10054595

  36. [36] Mengxuan, C. (2023). Privacy protection and robocare in long term care. Revista facultății de drept oradea, 1(1), 97–110. https://www.ceeol.com/search/article-detail?id=1327978

  37. [37] Sumathi, S., Suganya, K., Swathi, K., Sudha, B., Poornima, A., Varghese, C. A., & Aswathy, R. (2023). A review on deep learning-driven drug discovery: Strategies, tools and applications. Current pharmaceutical design, 29(13), 1013–1025. https://doi.org/10.2174/1381612829666230412084137

  38. [38] Altshuler, Y. (2025). Applied Swarm Intelligence. CRC Press. https://doi.org/10.1201/9780429276378

  39. [39] Elendu, C., Amaechi, D. C., Elendu, T. C., Jingwa, K. A., Okoye, O. K., Okah, M. J., … & Alimi, H. A. (2023). Ethical implications of AI and robotics in healthcare: A review. Medicine, 102(50), e36671. https://doi.org/10.1097/MD.0000000000036671

  40. [40] van der Merwe, J., & Casselman, F. (2023). Minimally invasive surgical coronary artery revascularization—Current status and future perspectives in an era of interventional advances. Journal of visualized surgery, 9. https://doi.org/10.21037/jovs-22-40

Published

2025-03-14

How to Cite

A Mageed , I. . (2025). Navigating the landscape of next-generation surgery through a new fractal scalpel. Trends in Health Informatics, 2(1), 27-39. https://doi.org/10.22105/thi.v2i1.28