Navigating the landscape of next-generation surgery through a new fractal scalpel
Abstract
Among the oldest medical skills, surgery is now experiencing its most fundamental change to date. The classic image of the surgeon dependent only on manual dexterity and direct line of sight is disappearing and giving way to a new paradigm whereby robotics enhances human experience, Augmented Reality (AR) lights it, and the predictive ability of Artificial Intelligence (IA) leads it. With next-generation surgery, this development promises unparalleled accuracy, little invasiveness, and customized patient care. Leading this uprising are not only small developments in technology but also whole new conceptual approaches for intervention, including the fledgling field of fractal geometric surgery. From impossible prices and ethical issues to the basic problem of incorporating these complex systems into clinical practice, this technologically advanced frontier presents its own set of great obstacles.
Keywords:
Next-generation surgery, Artificial intelligence, High-tech frontier, RoboticsReferences
- [1] Boal, M., Di Girasole, C. G., Tesfai, F., Morrison, T. E. M., Higgs, S., Ahmad, J., … & Francis, N. (2024). Evaluation status of current and emerging minimally invasive robotic surgical platforms. Surgical endoscopy, 38(2), 554–585. https://doi.org/10.1007/s00464-023-10554-4
- [2] Fong, Y., Erhunmwunsee, L., Pigazzi, A., Podolsky, D., & Portenier, D. D. (2024). Robotic general surgery. Wolters Kluwer Health. https://www.amazon.nl/-/en/Yuman-Fong/dp/1975192648
- [3] Hussain, M., Jaffar-Karballai, M., Kayali, F., Jubouri, M., Surkhi, A. O., Bashir, M., & Murtada, A. (2025). How robotic platforms are revolutionizing colorectal surgery techniques: A comparative review. Expert review of medical devices, 22(5), 437–453. https://doi.org/10.1080/17434440.2025.2486481
- [4] Abdelwahab, S. I., Taha, M. M. E., Farasani, A., Jerah, A. A., Abdullah, S. M., Aljahdali, I. A., ... & Hassan, W. (2024). Robotic surgery: Bibliometric analysis, continental distribution, and co-words analysis from 2001 to 2023. Journal of robotic surgery, 18(1), 335. https://doi.org/10.1007/s11701-024-02091-6
- [5] Togami, S., Higashi, T., Tokudome, A., Fukuda, M., Mizuno, M., Yanazume, S., & Kobayashi, H. (2023). The first report of surgery for gynecological diseases using the hinotoriTM surgical robot system. Japanese journal of clinical oncology, 53(11), 1034–1037. https://doi.org/10.1093/jjco/hyad105
- [6] Marchegiani, F., Siragusa, L., Zadoroznyj, A., Laterza, V., Mangana, O., Schena, C. A., ... & de’Angelis, N. (2023). New robotic platforms in general surgery: what’s the current clinical scenario? Medicina, 59(7), 1264. https://doi.org/10.3390/medicina59071264
- [7] Śliwczyński, A., Szymański Michałand Wierzba, W., Furlepa, K., Korcz, T., Brzozowska, M., & Glinkowski, W. (2024). Robotic-assisted surgery in urology: Adoption and impact in Poland. https://doi.org/10.20944/preprints202410.0369.v1
- [8] Sarin, A., Samreen, S., Moffett, J. M., Inga-Zapata, E., Bianco, F., Alkhamesi, N. A., ... & SAGES Robotic Platforms Working Group. (2024). Upcoming multi-visceral robotic surgery systems: A SAGES review. Surgical endoscopy, 38(12), 6987-7010. https://doi.org/10.1007/s00464-024-11384-8
- [9] Kumar, R., Jain, V., Han, G. T. W., & Touzene, A. (2023). Immersive virtual and augmented reality in healthcare: an IoT and blockchain perspective. CRC Press. https://doi.org/10.1201/9781003340133
- [10] Gayet, B., de Trogoff, E., & Osdoit, A. (2024). The evolution of minimally invasive robotic surgery: Addressing limitations and forging ahead? In Artificial intelligence and the perspective of autonomous surgery (pp. 119–137). Springer. https://doi.org/10.1007/978-3-031-68574-3_9
- [11] Jin, M. L., Brown, M. M., Patwa, D., Nirmalan, A., & Edwards, P. A. (2021). Telemedicine, telementoring, and telesurgery for surgical practices. Current problems in surgery, 58(12), 100986. https://doi.org/10.1016/j.cpsurg.2021.100986
- [12] Pilavaki, P., Gahanbani Ardakani, A., Gikas, P., & Constantinidou, A. (2023). Osteosarcoma: Current concepts and evolutions in management principles. Journal of clinical medicine, 12(8), 2785. https://doi.org/10.3390/jcm12082785
- [13] Di Ieva, A. (2024). Computational fractal-based analysis of MR susceptibility-weighted imaging (SWI) in neuro-oncology and neurotraumatology. In The fractal geometry of the brain (pp. 445–468). Springer. https://doi.org/10.1007/978-3-031-47606-8_23
- [14] Cummings, D., Wong, J., Palm, R., Hoffe, S., Almhanna, K., & Vignesh, S. (2021). Epidemiology, diagnosis, staging and multimodal therapy of esophageal and gastric tumors. Cancers, 13(3), 582. https://doi.org/10.3390/cancers13030582
- [15] Markan, S., Verma, M. M., & Garg, V. (2025). Transformation of India’s med-tech ecosystem for surpassing the valleys of death for societal impact: A need for a multi-sectoral approach. In Innovations in healthcare technologies in india: an initiative of icmr-cibiod (centre for innovation and bio-design) (pp. 119–126). Springer. https://doi.org/10.1007/978-981-97-0244-2_13
- [16] Vuille-dit-Bille, R. N. (2020). Special issue on surgical innovation: new surgical devices, techniques, and progress in surgical training. Journal of international medical research, 48(3), 0300060519897649. https://doi.org/10.1177/0300060519897649
- [17] Mageed, I. A., & Bhat, A. H. (2022). Generalized Z-Entropy (Gze) and fractal dimensions. Appl. math, 16(5), 829–834. http://dx.doi.org/10.18576/amis/160517
- [18] Mageed, I. A., & Mohamed, M. (2023). Chromatin can speak fractals: A review. The university of bradford life sciences postgraduate research conference. University of Bradford. https://www.researchgate.net/publication/374056291_Chromatin_can_speak_Fractals-_review
- [19] Mageed, I. A. (2023). Fractal dimension (d f) of ismail’s fourth entropy (h iv( q, a 1, a 2,.., a k)) with fractal applications to algorithms, haptics, and transportation. 2023 international conference on computer and applications (ICCA) (pp. 1–6). IEEE. https://doi.org/10.1109/ICCA59364.2023.10401780
- [20] Mageed, I. A. (2024). The fractal dimension theory of ismail’s third entropy with fractal applications to cubesat technologies and education. Complexity analysis and applications, 1(1), 66–78. https://doi.org/10.48314/caa.v1i1.31
- [21] A Mageed, I., & Li, H. (2025). The golden ticket: Searching the impossible fractal geometrical parallels to solve the millennium, P vs. NP open problem. https://www.preprints.org/frontend/manuscript/f465506d31ca34adaf50160c2b033232/download_pub
- [22] A Mageed, I., & Li, H. (2025). Reaching the pinnacle of the digital worldopen mathematical problems in AI-driven robot control. Soft computing fusion with applications, 2(2), 74–84. https://doi.org/10.22105/scfa.v2i2.54
- [23] A Mageed, I. (2025). Fractals across the cosmos: From microscopic life to galactic structures. https://www.researchgate.net/profile/Ismail-A-Mageed-2/publication/392327081_Fractals_Across_the_Cosmos-_From_Microscopic_Life_to_Galactic_Structures/links/683dd7c86b5a287c3048c3b8/Fractals-Across-the-Cosmos-From-Microscopic-Life-to-Galactic-Structures.pd
- [24] A Mageed, I. (2025). Surpassing beyond boundaries: Open mathematical challenges in AI-driven robot control. https://www.preprints.org/frontend/manuscript/89b389b18166331f6c1538da8f595993/download_pub
- [25] Nayak, S. R., & Mishra, J. (2019). Analysis of medical images using fractal geometry. In Histopathological image analysis in medical decision making (pp. 181–201). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-5225-6316-7.ch008
- [26] Baish, J. W., & Jain, R. K. (2000). Fractals and cancer. Cancer research, 60(14), 3683–3688. https://aacrjournals.org/cancerres/article/60/14/3683/506426/Fractals-and-Cancer1
- [27] Gazit, Y., Baish, J. W., Safabakhsh, N., Leunig, M., Baxter, L. T., & Jain, R. K. (1997). Fractal characteristics of tumor vascular architecture during tumor growth and regression. Microcirculation, 4(4), 395–402. https://doi.org/10.3109/10739689709146803
- [28] Szasz, A. (2021). Vascular fractality and alimentation of cancer. International journal of clinical medicine, 12(7), 279–296. https://doi.org/10.4236/ijcm.2021.127025
- [29] Lookian, P. P., Chen, E. X., Elhers, L. D., Ellis, D. G., Juneau, P., Wagoner, J., & Aizenberg, M. R. (2022). The association of fractal dimension with vascularity and clinical outcomes in glioblastoma. World neurosurgery, 166, e44--e51. https://doi.org/10.1016/j.wneu.2022.06.073
- [30] Chatterjee, S., Das, S., Ganguly, K., & Mandal, D. (2024). Advancements in robotic surgery: Innovations, challenges and future prospects. Journal of robotic surgery, 18(1), 28. https://doi.org/10.1007/s11701-023-01801-w
- [31] Oslock, W. M., Jeong, L. D., Perim, V., Hua, C., & Wei, B. (2024). Robotic surgical education: A systematic review of strategies trainees and attendings can utilize to optimize skill development. AME surgical journal, 4. https://doi.org/10.21037/asj-24-14
- [32] Sherif, Y. A., Adam, M. A., Imana, A., Erdene, S., & Davis, R. W. (2023). Remote robotic surgery and virtual education platforms: How advanced surgical technologies can increase access to surgical care in resource-limited settings. Seminars in plastic surgery (Vol. 37, pp. 217–222). Thieme Medical Publishers, Inc. https://doi.org/10.1055/s-0043-1771301
- [33] Collins, J. W., Marcus, H. J., Ghazi, A., Sridhar, A., Hashimoto, D., Hager, G., ... & Stoyanov, D. (2022). Ethical implications of AI in robotic surgical training: A Delphi consensus statement. European urology focus, 8(2), 613–622. https://doi.org/10.1016/j.euf.2021.04.006
- [34] Fairag, M., Almahdi, R. H., Siddiqi, A. A., Alharthi, F. K., Alqurashi, B. S., Alzahrani, N. G., ... & Alshehri Sr, R. (2024). Robotic revolution in surgery: Diverse applications across specialties and future prospects review article. Cureus, 16(1), e52148. https://doi.org/10.7759/cureus.52148
- [35] Vashisht, N., Goyal, W., Choudhary, S., Jayakumar, S. S., Patil, S., Mohapatra, C. K., & Srividya, A. (2024). Ethical and legal challenges in the use of robotics for critical surgical interventions. Seminars in medical writing and education (Vol. 3, p. 30). AG Editor (Argentina). https://dialnet.unirioja.es/servlet/articulo?codigo=10054595
- [36] Mengxuan, C. (2023). Privacy protection and robocare in long term care. Revista facultății de drept oradea, 1(1), 97–110. https://www.ceeol.com/search/article-detail?id=1327978
- [37] Sumathi, S., Suganya, K., Swathi, K., Sudha, B., Poornima, A., Varghese, C. A., & Aswathy, R. (2023). A review on deep learning-driven drug discovery: Strategies, tools and applications. Current pharmaceutical design, 29(13), 1013–1025. https://doi.org/10.2174/1381612829666230412084137
- [38] Altshuler, Y. (2025). Applied Swarm Intelligence. CRC Press. https://doi.org/10.1201/9780429276378
- [39] Elendu, C., Amaechi, D. C., Elendu, T. C., Jingwa, K. A., Okoye, O. K., Okah, M. J., … & Alimi, H. A. (2023). Ethical implications of AI and robotics in healthcare: A review. Medicine, 102(50), e36671. https://doi.org/10.1097/MD.0000000000036671
- [40] van der Merwe, J., & Casselman, F. (2023). Minimally invasive surgical coronary artery revascularization—Current status and future perspectives in an era of interventional advances. Journal of visualized surgery, 9. https://doi.org/10.21037/jovs-22-40